Delivery of paeonol by nanoparticles enhances its in vitro and in vivo antitumor effects

نویسندگان

  • Cong Chen
  • Feng Jia
  • Zhibo Hou
  • Shu Ruan
  • Qibin Lu
چکیده

Paeonol (Pae; 2'-hydroxy-4'-methoxyacetophenone) has attracted intense attention as a potential therapeutic agent against various cancers. However, the use of Pae is limited owing to its hydrophobicity. Recently, biodegradable polymeric nanoparticles with amphiphilic copolymers have been used as drug carriers; these have better bioavailability and are promising tumor-targeted drug delivery systems. In the current study, we prepared Pae-loaded nanoparticles (Pae-NPs) with amphiphilic block copolymers using nanoprecipitation. The physiochemical characteristics and antitumor effects of nanoparticles were evaluated in different cancer cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed substantial inhibition of cell growth by Pae-NPs. Moreover, lower doses of Pae-NPs inhibited cell growth more efficiently than the equivalent doses of free Pae. Inhibition was characterized by significant elevation of intracellular reactive oxygen species and subsequent inhibition of Akt and regulation of apoptotic proteins, which could be partly reversed by pretreatment with the antioxidant N-acetylcysteine. In vivo results also demonstrated that Pae-NPs could exert much stronger antitumor effects than free Pae. Therefore, Pae-NPs represent a promising delivery system to overcome the low solubility of Pae and enable its use in treating cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in vitro cytotoxicity and in vivo antitumor effect

In this study a 3-factor, 3-level Box-Behnken design was used to prepare optimized docetaxel (DTX) loaded pegylated poly lactide-co-glycolide (PEG-PLGA) NPs with polymer concentration (X1), drug concentration (X2) and ratio of the organic to aqueous solvent (X3) as the independent variables and particle size (Y1), poly dispersity index (PDI) (Y2) and drug loading (Y3) as the responses. The cyto...

متن کامل

Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in vitro cytotoxicity and in vivo antitumor effect

In this study a 3-factor, 3-level Box-Behnken design was used to prepare optimized docetaxel (DTX) loaded pegylated poly lactide-co-glycolide (PEG-PLGA) NPs with polymer concentration (X1), drug concentration (X2) and ratio of the organic to aqueous solvent (X3) as the independent variables and particle size (Y1), poly dispersity index (PDI) (Y2) and drug loading (Y3) as the responses. The cyto...

متن کامل

Evaluation of Paeonol Skin-Target Delivery from Its Microsponge Formulation: In Vitro Skin Permeation and In Vivo Microdialysis

The aim of the present study was to design a novel topical skin-target drug-delivery system, the paeonol microsponge, and to investigate its drug-release patterns in dosage form, both in vitro and in vivo. Paeonol microsponges were prepared using the quasi-emulsion solvent-diffusion method. In vitro release studies were carried out using Franz diffusion cells, while in vivo studies were investi...

متن کامل

Liposome and polymer-based nanomaterials for vaccine applications

Nanoparticles (NPs) are effective and safe adjuvants for antigen delivery in modern vaccinology. Biodegradable nanomaterials with suitable properties are frequently applied for conjugation or loading with antigens; they protect the antigens from degradation in vivo. NPs are applied as effective delivery system to facilitate antigen uptake by antigen presenting cells (APCs) and especially dendri...

متن کامل

Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation

Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017